资料内容:
计算平均有哪些指标,各有哪些优缺点
数值平均数有算术平均数、调和平均数、几何平均数等形式 位置平均数有众数、中位数、四分位数等形式 前三种是根据各单位标志值计算的,故称为数值平均值,后三种是根据标志值所处的位置.
相关分析和回归分析有什么关系
回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。
回归分析和相关分析都是研究变量间关系的统计学课题,它们的差别主要是:
1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;
2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;
3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制。
3.给出一组数据说是服从正态分布,求方差和均值
4.给出一个概率分布函数,求极大似然估计
求极大似然函数估计值的一般步骤:
(1) 写出似然函数;(2) 对似然函数取对数,并整理;(3) 求导数 ;(4) 解似然方程
极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。当然极大似然估计只是一种粗略的数学期望,要知道它的误差大小还要做区间估计。
例3.7.3 已知总体X服从泊松分布
(λ>0, x=0,1,…)
(x1,x2,…,xn)是从总体X中抽取的一个样本的观测值,试求参数λ的极大似然估计.
解.参数λ的似然函数为